4,462,077

1

TRACE FACILITY FOR USE IN
MULTIPROCESSING ENVIRONMENT

BACKGROUND OF THE INVENTION

The development of software in computer based
systems has become very time-consuming and, there-
fore, an expensive part of the initial cost of these sys-
tems. One difficulty is that many of the transactions
between various pieces of software are not fully tested
at the time the software is written. Accordingly, run-
ning the software causes logic errors to occur that are
unexpected and these errors frequently produce unde-
sirable results. These unexpected logic errors and unde-
sirable results are frequently said to be due to bugs in
the software.

One technique for locating the bugs in software is to
intersperse coded statements within the software that
provide the developer with an indication as to what
values key parameters have during the execution of the
software at the various points in the software at which
the coded statements are inserted. The parameter values
provided in this way will frequently provide the devel-
oper with an indication as to what is wrong with the
present state of the software. These debugging state-
ments frequently referred to as tracing statements take
time to execute, and if a large number of them are inter-
spersed within the code, the execution time for a partic-
ular piece of software can be increased significantly. It
is therefore desirable to have only those tracing state-
ments which are essential to a particular debugging
operation to be executed. Inasmuch as there is usually
no foresight as to which part of the software code or
which function within the code will experience difficul-
ties in execution, the tracing statements are usually
interspersed at all points in a process that will be ex-
pected to give useful output parameters. This is found to
be far more efficient than subsequently inserting state-
ments only in the portions of code that are presently
experiencing difficulties. The latter procedure would
require constant rewriting of the source code and
recompilation of that code every time a new bug is
uncovered.

With trace statements interspersed throughout the
code, it is desirable to have some way of deactivating
the trace statements that are not presently required. One
technique of achieving this mode of operation is to
cause each tracing statement to contain arguments
which indicate the subsystem and function with which
it is associated in the code and to have a table loaded at
the beginning of the process execution which specifies
the subsystems and functions within the code presently
requiring tracing. The inclusion of a subsystem or func-
tion within the table will cause the trace statements
associated with those subsystems and functions to pro-
duce an output of the parameters specified in the trace
statement. One difficulty with this approach is that the
table must be changed in order to change the subsystem
or function under investigation and the process must
then be rerun from its starting point. This approach is
especially difficult in cases where the processes execute
over long periods of time. For example, in a communi-
cation system where there are many interrelated pro-
cesses that are executed and continue to live while the
system is active, a change in the table would require
that the entire system be deactivated while a change be
made in the table of each process. The system would
then have to be reinitialized by bringing up all the pro-

5

20

25

30

35

45

50

55

60

65

2

cesses and thereby consuming a large amount of time
solely for the purpose of debugging a new subsystem or
function.

Still another approach to the selective activation of
trace statements in a multiprocessing environment is to
provide a global table rather than a local table within
each process. This global table can be associated with
an operating system which is present during the execu-
tion of every process in the system. One feature that
may be used to construct a table in connection with the
VAX11/780 computer from Digital Equipment Corpo-
ration is the “logical name table” associated with its
VMS operating system. Each process during its execu-
tion may then check the subsystem name and function
name within the logical name table in order to deter-
mine whether a particular trace statement should be
executed. The difficulty with this approach is that ac-
cessing the logical name table in the operating system is
far more time consuming than accessing a table within
the process itself. In addition, the logical name table
may frequently have a much larger number of entries
than a local table within the process and for this reason
requires even more time than access to a local table.

SUMMARY OF THE INVENTION

A highly efficient trace facility is provided in accor-
dance with the present invention wherein a process in a
multiprocessing environment has a trace library within
which a local trace table provides a list of the subsys-
tems and functions whose trace statements are to be
activated during any execution of the process. A global
trace table is also provided containing a list of the pro-
cesses, subsystems and functions whose trace statements
are to produce results during execution. The trace li-
brary also has a local sync word which can be com-
pared to a global sync word in order to determine
whether any changes had been made in the global table
that have not yet been updated within the local table.
Each call to the trace library of the process causes such
a comparison to be made between the two sync words.
If no difference exists the local table is used to deter-
mine whether that particular call to the trace library
should result in the output of the parameters associated
with that call. The parameters in the local table are
therefore replaced by their values in the global table
only when a difference is detected between the local
sync word and the global sync word. As a result, the
much longer period of time required for reading the
global trace table is avoided except when changes are
made in the global table.

It is a feature of the present invention that the global
trace table and the local table in the trace library also
include a level value. This level value permits different
degrees of investigation into the operation of each pro-
cess during development of the code. Each trace state-
ment is assigned a value to indicate the degree of impor-
tance of that trace statement in the debugging of that
process. Level 1 statements, for example, could be re-
served for the trace statements that are essential in de-
termining an overview of the operation of that progéess
(for example, inputs to and outputs from the proeess).
At the other extreme, a higher number level, level fous
for example, can be assigned to those tface stateients
which provide detailed information about the operation
of the subf@utines within the process. As a result, the
trace faeility ean be caused to permeate the execution of
the proeesses to varying degrees depending of the level



